MATH 504 HOMEWORK 8

Due Monday, November 26.

Problem 1. Suppose that for all $n, 2^{\aleph_n} = \aleph_{\omega+1}$. Show that $2^{\aleph_\omega} = \aleph_{\omega+1}$.

Hint: for every $A \subset \aleph_{\omega}$, define $A_n = A \cap \aleph_n$. Consider the map $h(A) = \langle A_n \mid n < \omega \rangle$.

Problem 2. Suppose that $i : \mathbb{P} \to \mathbb{Q}$ is such that:

- (1) $i(1_{\mathbb{P}}) = 1_{\mathbb{O}}$
- (2) for all $p_1, p_2 \in \mathbb{P}$, if $p_1 \leq p_2$, then $i(p_1) \leq i(p_2)$,
- (3) for all $p_1, p_2 \in \mathbb{P}$, $p_1 \perp p_2$ iff $i(p_1) \perp i(p_2)$,
- (4) whenever A is a maximal antichain in \mathbb{P} , then i $A = \{i(p) \mid p \in A\}$ is a maximal antichain.

Prove that if G is \mathbb{Q} -generic, then $H =_{def} \{p \in \mathbb{P} \mid i(p) \in G\}$ is \mathbb{P} -generic. Also show that $V[H] \subset V[G]$. Here V is some ground model.

Problem 3. Let $\kappa < \lambda$ be such that κ is a regular cardinal, λ is an inaccessible cardinal, and let $\kappa < \tau < \lambda$. Show that there is $i : Col(\kappa, \tau) \rightarrow Col(\kappa, < \lambda)$ as in the above problem.

Problem 4. Suppose that κ is inaccessible in M and \mathbb{P} is a poset of cardinality less than κ . Show that for any generic G for \mathbb{P} over M, in M[G], κ remains inaccessible.

Problem 5. Suppose that in M, κ is a regular cardinal, \mathbb{P} has the κ -c.c. and G is \mathbb{P} over M.

- (1) Suppose that in M[G], C is a club subset of κ . Show that $D := \{\alpha < \kappa \mid 1_{\mathbb{P}} \Vdash \alpha \in \dot{C}\}$ is a club subset of κ in M.
- (2) Use the above to show that \mathbb{P} preserves stationary sets i.e. if $M \models$ " $S \subset \kappa$ is stationary", then $M[G] \models$ " $S \subset \kappa$ is stationary".